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Abstract. We use the semiclassical quantization scheme of Bogomolny to calculate eigenvalues
of the Limaçon quantum billiard corresponding to a conformal map of the circle billiard. We use
the entire billiard boundary as the chosen surface of section and use a finite approximation for the
transfer operator in coordinate space. Computation of the eigenvalues of this matrix combined with
a quantization condition, determines a set of semiclassical eigenvalues which are compared with
those obtained by solving the Schrödinger equation. The classical dynamics of this billiard system
undergoes a smooth transition from integrable (circle) to completely chaotic motion, thus providing
a test of Bogomolny’s semiclassical method in coordinate space in terms of the morphology of the
wavefunction. We analyse the results for billiards which exhibit both soft and hard chaos.

1. Introduction

This paper presents a numerical investigation of Bogomolny’s semiclassical scheme for solving
the quantum problem of a non-integrable billiard system. We deal with a single particle
in a zero-field environment making specular collisions with a closed and singly connected
boundary. The analogous quantum problem refers to the solution of the Helmholtz equation
in a closed regionB,

1Erψ(Er) + k2ψ(Er) = 0 (1)

with Dirichlet boundary condition,ψ(Er)|∂B = 0 andh̄ = 1, 2m = 1. Such a system is called
a quantum billiard.

During the past 20 years a tremendous effort has been devoted to the study of quantum
systems whose classical counterpart is chaotic. A detailed analysis of the results comprises
the statistical properties of the energy spectrum and the geometric structure or morphology
of the eigenfunctions and their statistics. Some recent reviews with many references to the
progress made can be found in Gutzwiller [1], Giannoniet al [2] and Casati and Chirikov [3].
At the heart of these studies lies the issue of quantum chaos or the influence of classical
chaos on the solutions of equation (1). On the one hand, past research has considered
the statistics of the energy-level spectrum and has demonstrated the existence of universal
classes for particular classical regimes. Integrable dynamics lead to uncorrelated energy levels
(Poisson spectrum) and completely chaotic systems lead to Wigner–Dyson statistics of one of
the standard ensembles of random matrices. On the other hand the notion of scars has played
an important role in the study of eigenfunction structure [4–10].
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As for the methods to solve the quantum problem, many have been proposed and the most
successful will be briefly mentioned. Most textbooks deal with integrable systems since an
analytic solution for the energy exists and can be easily written down. Unfortunately, they do
not even mention generic non-integrable chaotic classical systems for which the quantum
problem can only be solved numerically. Of all the methods, two have stood out to be
particularly successful; they are the plane wave decomposition method (PWDM) invented
by Heller [4, 11] and improved by Liet al [8, 9, 12], and the boundary integral method
(BIM) [13–15].

Other methods also deserve mention. Firstly we consider the conformal map
diagonalization technique, which was first used by Robnik to calculate the eigenvalues of
the Limaçon billiard [16]. This method makes use of a conformal map which transforms the
boundary to an integrable geometry but adds additional terms to the Hamiltonian. This method
was later invoked by Berry and Robnik [17], Prosen and Robnik [18] and Bohigaset al [19].
In addition, the scattering quantization method introduced by Smilansky and co-workers [20]
provides an alternative approach for solving the eigenvalue problem. Prosen [21] has extended
this scattering quantization method to an exact quantization on the surface of a section. In
his method, the exact unitary quantum Poincaré mapping is constructed quite generally from
the scattering operators of the related scattering problem whose semi-classical approximation
gives exactly Bogomolny’s transfer operator which shall be studied exclusively in this paper.
As for the method of calculating high-lying eigenstates, we would like to mention the method
introduced by Vergini and Saraceno [22]. This method overcomes the disadvantage of missing
levels via the PWDM and in the BIM, and can directly give all eigenvalues in a narrow energy
range by solving a generalized eigenvalue problem. However, it is still not clear whether this
method applies to a billiard having a non-convex boundary.

The above methods attempt to find solutions of the Schrödinger equation by an exact
albeit numerical method, and as a result a small error must be expected. Another approach,
not exact, refers to quantization in the semiclassical limit, ¯h→ 0, or quantization of high-lying
eigenvalues. The study of quantum chaos and the extraction of eigenvalues via semiclassical
methods began with the quantization of integrable systems or EBK theory. In the past 40 years,
though, much effort has been spent to extend the semiclassical approach to quantum systems
whose classical counterpart is not integrable. Naturally, this study is intimately tied to the
study of quantum chaos.

The first semiclassical approximations for classically chaotic systems are all based on the
Gutzwiller trace formula (GTF) [1]. In this theory, the density of state (ρ(E) =∑i δ(E−Ei))
is expressed as a sum of two terms, the first being the usual Weyl formula or Thomas–Fermi
density of states and the second being a long-range surface correction term. In 2D one writes:

ρ(E) ≈ ρ̄(E) + Im
i

πh̄

∑
p

∞∑
r=1

Tp(E)√
| det(Mr

p(E)− I )|
exp

[(
i

h̄
Sp(E)− i

π

2
µp

)
r

]
(2)

where the second term on the right-hand side contains information pertaining to primitive
periodic orbits and their repetitions, labelled byp. This includes the actionSp, the trace of the
monodromy matrixMr

p, a phase factor,µp and the geometrical periodTp(E) = ∂Sp
∂E

. While
formally applicable for systems whose classical counterparts are either chaotic, integrable or a
mixture of the two, the GTF (in its form written above) has been shown to fail, or at best proved
difficult to implement for two independent reasons. One problem deals with mixed systems
where the main contribution from bifurcating periodic orbits is divergent, TrMp → ±2, and
has motivated a re-evaluation of each orbit’s contribution close to the bifurcation. The other
deals with the divergence of the sum due to an exponential proliferation of classical orbits
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(e.g. an exponential increase in the number of long-range periodic orbits with energy). In
recent years, there have been many works devoted to overcome these two shortcomings of the
GTF. On the one hand, the cycle expansion method [23] and an energy-smoothed version of
the GTF [24] have been invented to provide a numerically efficient and convergent method to
evaluate periodic-orbit expressions. On the other hand, many works have been down to the
addition of higher terms of ¯h [25].

More recently another approach to the semiclassical quantization problem was presented
by Bogomolny [26]. Bogomolny’s method makes use of a finite representation of a quantum
Poincaŕe map in the semiclassical limit and leads to the calculation of a matrix whose
eigenvalues allow one to determine an approximation to the true energy eigenvalues. It is
founded on the BIM for determining wavefunctions inside a billiard system and its theoretical
motivation came from two facts:

• one, for generic billiard problems in any kind of external field, there does not exist an
explicit closed form solution for the Green function;
• two, for general boundary condition involvingψ and its derivatives one cannot reduce the

solution of equation (1) to an integral equation which can be easily solved numerically as
in typical problems where the BIM is useful.

Bogomolny worked around this by employing the standard semiclassical formula for the Green
function in the energy representation and working in a boundary integral-like setting. He
introduces by this way, a semiclassical transfer operatorT (E) and a quantization condition for
an eigenvaluedet(I − T (E)) = 0. We should mention that there are also other semiclassical
transfer operators and Fredholm type determinants. Please see [29] for more detail.

Some past applications of Bogomolny’s method, include the following examples. It
has been successfully applied to the rectangular billiard [28], and to billiards with circular
symmetry [29–31]. All of these systems are integrable. For systems exhibiting hard chaos, we
can mention applications to the geodesic flow on surfaces of constant negative curvature [32]
and to the wedge billiard [33]. An interesting study [34] has also been carried out by applying
Bogomolny’s transfer operator to a smooth nonscalable potential, the Nelson potential, at two
fixed energies which correspond one to motion that is mostly integrable and the other mostly
chaotic. However, to date an exhaustive test of the method for various classical regimes has
not been done or at least not to very high energies. Goodingset al [33] explore the first 30
eigenvalues for angles of the wedge billiard corresponding to soft chaos.

In this paper we report the results of Bogomolny’s semiclassical quantization scheme in
a closed billiard whose boundary is derived from the quadratic conformal map of the unit
circle [35], namely the Limaçon billiard. The mapping is controlled by a single parameterλ,
with λ = 0 corresponding to the circle billiard:

x = cos(θ) + λ cos(2θ)

y = sin(θ) + λ sin(2θ).
(3)

For all λ, 0 6 λ < 1
4 the boundary is analytic but non-convex forλ > 1

4. The classical
dynamics of this system has been investigated [35], and shown to undergo a smooth transition
from integrable motion,λ = 0 to a soft chaos, KAM regime, 0< λ 6 1

4. At the convex–
concave transition point,λ = 1

4, the motion is very nearly ergodic [35]. While Hayliet al [36]
have shown that some very small stable islands still exist in the phase space, it can be supposed
that above aλ ≈ 0.28 these stable islands also disappear and the dynamics be that of hard
chaos with mixing and positive K-entropy. A particular case isλ = 1

2, for which the billiard
boundary has one non-analytic point and it has been rigorously shown [37], that the motion
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exhibits hard chaos. Forλ = 0.15 the chaotic regions cover 64.6% of the phase space and for
λ = 0.2 they cover more than 90% [18].

To understand, at least, from a qualitative point of view, how Bogomolny’s semiclassical
method might work in the Limaçon billiard we may consider three independent factors: (1) the
success of the BIM without any semiclassical approximation; (2) the effects that a transition
through a mixed regime will have on the morphology of each eigenstate; (3) the propensity
of Bogomolny’s method for describing the energy of any particular kind of eigenstate based
on the classification scheme, regular, mixed, and chaotic. The latter classification was first
proposed by Percival [38] and used as the essential ingredients for the energy level statistics
in mixed systems, namely the Berry–Robnik surmise [39]. Moreover, a detailed classification
of states as being either regular or chaotic in the deep semiclassical limit has been performed
with great success for the system studied here [40,41] and also for much higher energy levels
in another system [21]. However, it is clear that this may not be possible at lower energies,
the first 200 states, where the effective ¯h occupies a phase space area∝ 1/

√
E and is too large

for sufficient resolution of projected states on a Poincaré surface of section, (see section 3).
In this paper we will consider values ofλ corresponding to soft chaos,λ = 0.1, 0.15 and to
harder chaos (or nearly hard chaos),λ = 0.2, 0.23, 0.245, 0.25. At λ = 0.15 we also study
the method in the deep semiclassical limit where a classification of states is possible.

As was stated above, the function, det(I − T (E)), equals zero asE equals an energy
eigenvalue. Most importantly, though, a formal relation between this determinant and the
GTF has been demonstrated [26]

ln(det(I − T osc(E))) =
∑
p

Tp

h̄
√| det(Mp − I )|

exp

(
i

h̄
Sp − i

π

2
µp

)
so that formally the zeros of the Bogomolny transfer operatorI − T (E) must be close to
the positions of the poles of the GTF (the zeros of the former are separated from the poles
of the latter by one stationary phase integral [26]). While strictly formal, this relation does
beg a comparison between the two methods in the purely hard chaos regime and some very
good results have been obtained using many thousands of unstable periodic orbits in strongly
chaotic billiard systems [24]. But again, these results were obtained using methods that are
most appropriate to systems exhibiting hard chaos and as such are not readily applicable to the
system at hand.

2. The transfer operator in coordinate space

We will deal with a closed billiard system with the Dirichlet boundary condition, in which the
transfer operator of Bogomolny acts as a quantum Poincaré map [21]. We have mentioned that
Bogomolny’s method is founded on the BIM. This interpretation however is not necessary.
We may also derive Bogomolny’s quantization condition by starting with the general theory
of quantum Poincaré maps (QPM). In this theory, one must initially define a certain surface of
section (SOS),P, a set of coordinatess onP and a domain,L, for the QPM: in other words a
set ofL2 functions inP .

Prosen [21] considers a certain non-unitary, compact QPM constructed from the product
of two scattering transfer operators and shows that its semiclassical limit reduces to the transfer
operator of Bogomolny. In general a QPM acts onψ1 ∈ L to give aψ2 ∈ L. In the coordinates
representation onP this is given by,

ψ2(s
′) =

∫
SOS

ds T (s, s ′, E)ψ1(s). (4)
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A viable quantization condition (i.e. one that corresponds to the Schrödinger equation of the
full system) can be obtained by requiring that for some energy,E∗, there exists someψ in L
that is left unchanged after one Poincaré mapping [21]. This means that the QPM has at least
one unit eigenvalue atE∗.

For generic problems one can construct a special scattering Hamiltonian in the SOS and
from this an exact non-unitary compact QPM as in [20, 21]. On the other hand, to study
the problem semiclassically one replaces the same QPM with its semiclassical limit which
is Bogomolny’s transfer operator,T osc (from now on we denote the transfer operator of
Bogomolny byT osc to distinguish it from any other QPM). Using equation (4), this leads
to the familiar semiclassical quantization condition [26],

det(I − T osc(E)) = 0 (5)

whereT osc is constructed from classical trajectories passing from the SOS back to itself
after one application of the QPM. The paper [21] also indicates how to treat higher-order
semiclassical errors for the energy (please also see [14,25] and references therein).

In solving equation (5) we must first express the transfer operator in a finite dimensional
basis and the roots are then computed numerically. A particularly convenient choice for the
SOS is the billiard boundary with a basis formed from a discretization of the boundary in
either momentum or coordinate space. We have chosen the coordinate space representation
and a discretization of the boundary intoN cells of length1m(m = 1, . . . , N). Let s be the
coordinate that measures distance along the boundary, and lets = sn, s ′ = sm be two points
in two different cells. The semiclassical description for calculating the matrix element,T oscn m ,
is to sum over all possible classical trajectories which cross the SOS atsn andsm after one
application of the Poincaré map†,

T osc(E)=
 −1

(2iπh̄)1/2

∣∣∣∣∂2S(sn, sm;E)
∂sn∂sm

∣∣∣∣1/2 exp

[
i

h̄
S(sn, sm;E)− i

π

2
ν

]√
δnδm n 6= m

1.0 n = m.

(6)

By using the entire boundary we have the numerical simplification that each cell is
connected by one unique trajectory whose actionS(sn, sm;E) at energyE is the length
of the chord passing between these points multiplied by the factor

√
E. For the Dirichlet

boundary condition and a convex geometry we put the phase indexν equal to two for all
matrix elements. For the Dirichlet boundary condition and a non-convex geometry one can
include ghost trajectories [26] that go outside the billiard to connect cells. Finally, the prefactor
in equation (6) contains the mixed second derivative of the action,|∂2S/∂s∂s ′|1/2. The latter
can be conveniently related to the linear Poincaré map for going from the boundary back to
itself.

Bogomolny also writes down a prescription for the dimension of the transfer matrix which
says that in passing from an operator to a finite representation one should give theT matrix a
dimension no smaller than the number given by:

dim(T ) > A(E)/(2πh̄) = L
√
E/π (7)

whereA is the classically allowed area in phase space,L is the billiard perimeter and ¯h = 1.
One could study the curvef (E) = det(I − T osc(E)) but we prefer to examine individual
eigenvalues of theT matrix. In practice we do not exactly satisfy the quantization condition,
only in the limit of an infinite transfer matrix can the unitarity condition of Bogomolny’s

† We note that the SOS is really a small distanceε from the boundary.
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transfer operator be recovered and an eigenvalue of the matrix be exactly one. In this case we
are obtaining an exact solution to equation (5).

Finally we note that the dimension of theT osc matrix is also equal to the number of
cells on the SOS. Assuming that all cells have the same size we then define a parameter
b, [14,15], which represents the number of cells that make up one de Broglie wavelength, that
is b = 2π dim(T )/(

√
EL). Or by using equation (7) this corresponds tob being no smaller

than two (at least two cells per wavelength). Of course we should and must use a higher
dimension and our calculations were performed with matrices exceeding the number in the
Weyl formula for a one freedom by a factor of 10–20. In the very deep semiclassical limit, we
were not able to go beyondb ≈ 5 due to the limitation of computation facilities.

3. Numerical calculation of eigenenergies

The boundary of the Limaçon billiard is given by equation (3). Forλ = 0 the eigenenergies are
the zeros of the Bessel functions. Let us denote thenth zero of themth-order Bessel function
byχij . The quantum energies are given by the square of this for ¯h = 1 andm = 0.5. Forλ > 0
each zeroχij (j > 0) splits into an eigenstate of odd/even parity with respect to reflection on
thex-axis. Thej = 0 order zeros, on the other hand, are associated with even states, so they
do not satisfy the Dirichlet boundary condition on thex-axis.

In choosing an appropriate coordinate space basis, we have several choices:

• By choosing the entire billiard boundary as a basis and puttingν = 2 in equation (6) for all
matrix elements we quantize implicitly all states which satisfy the Dirichlet condition for
these values of(x, y). Then since both odd and even states satisfy this condition, without
any reference to the latter being zero also on thex-axis, we will obtain a spectrum for
both symmetry classes.
• By choosing the upper boundary andx-axis as a basis and choosingν = 2 for all matrix

elements in equation (6) we will obtain a quantization for only odd states.
• By choosing a basis consisting of only half the boundary and constructing an appropriate

symmetry desired Green function by placing a hard (resp. soft) wall on thex-axis we
obtain a quantization condition for odd (resp. even) eigenvalues. In this case, however,
we must include one or two trajectories going between each cell.

When the boundary is non-convex,λ > 0.25, one must be careful in how to connect cells.
In (i), certain pairs of cells cannot be connected. We then have the choice of putting that matrix
element to zero or including the so-called ghost orbit [26]. In the latter case, however, not all
matrix elements will have the same factorν. Noting that the matrix must be symmetric leads
to the rule that the numberν is either zero or two depending on whether the trajectory crosses
the SOS an even or odd number of times. For the purely convex case,λ 6 0.25, all trajectoris
cross the SOS only once after one Poincaré map andν = 2. In (iii) we must decide which cells
have one or two orbits connecting them; obviously if only a ghost orbit can connect two cells,
there is only one trajectory, otherwise there are two trajectories. In order to compute only odd
states, we can put a hard wall along thex-axis and consider a basis consisting of thex-axis
and the upper boundary as in (ii). In (ii) one must consider only one trajectory connecting two
cells. However, the odd state eigenvalues computed this way were found to be a factor of ten
worse than using choice (i)†.

† This result was also found to be true in the stadium billiard considered later. Here we have studied the odd–odd
parity symmetry class by using both the entire stadium and the quarter stadium. We find, in accordance with the
Limaçon billiard, that the results are closer to the reference eigenvalues when using the entire boundary. The factor is



Bogomolny’s semiclassical quantization scheme 5425

Forλ < 0.25 we find absolutely no contradiction with using (i) and all results presented
in the figures are based on this choice. Naturally we choose1i = 1 = L/ dim(T ) for all cells
and from equation (3) we calculate the billiard’s area and perimeter. The latter,L, is given by
4(1 + 2λ)E(8λ/(1 + 2λ)) whereE(k) is the complete elliptic integral of the second kind. The
half boundary perimeter plus thex-axis then has length,L1/2 = L

2 + 2. As for the billiard area
A, it is π(1 + 2λ2). We then construct a formula for the number of odd and even states below
some energyE, from the usual semiclassical formulae [18],

Nodd(E) = A
8π
E − L1/2

4π

√
E +

5

24

Neven(E) = A
8π
E − L− L1/2

4π

√
E − 1

24
.

(8)

Our quantum results were obtained from the conformal map diagonalization technique
[18], and hereafter it is these values which are cited as the reference set of eigenvalues.
These reference eigenvalues are calculated by using a very large Hamiltonian matrix (i.e.
dim = 10 000) with the result that the lowest 1000 eigenvalues have an accuracy no worse
than 10−10 of the mean level spacing. The numerical calculations for the transfer matrix and
its roots were performed on a Compaq Alpha 2100. Often it was difficult to assign individual
states to a semiclassical root atλ = 0.15 andλ = 0.1 where the level repulsion and they
reflection symmetry were often not sufficiently broken. Moreover, since our implementation
of Bogomolny’s method is never more precise than 0.5% of the mean level spacing it was an
arbitrary choice in assigning to a pair of semiclassical roots an even and odd eigenvalue pair
in the quantum spectrum separated by less than 0.1% of the mean level spacing. Typically if
two semiclassical eigenvalues are very close to two quantum eigenvalues, we assign one of the
semiclassical eigenvalues to the quantum eigenvalue closest to it and the other semiclassical
eigenvalue to the remaining quantum eigenvalue.

We show results for energies in the intervalE = (5, 800) which includes approximately
the first 200 states (≈100 odd and 100 even states) for theλ’s listed in the introduction. We also
report results for an energy interval in the deep semiclassical limit forλ = 0.15. We report
all data in units of the mean level spacing such that ifEsc is the semiclassically predicted
eigenvalue andEex is the quantum result, then the error we consider is

α(E) = log10(|1E|) 1E = N(Esc)−N(Eex). (9)

In both figures 1 and 2 we plotα(E) as a function ofN(Eex).
In order to maintain consistently good precision the parameterbmust be kept constant over

an entire energy range. On the other hand we consider a constant matrix dimension and span
an appreciable energy range. So in the data of figures 1 and 2 we use a matrix of size 350 for
all λ in the energy interval (5,800) and in this rangeb decreases from 150 to 10, a considerable
change. The error fluctuates between−1.8 and−2.5, with the mean≈ − 2.1 (which means
that the error is about 1% of the mean level spacing) but does not change appreciably even
with the large change inb. Again we emphasize that the reference eigenvalues come from
the matrix diagonalization technique. A rough mean obtained by using the BIM without any
semiclassical approximation has been shown to be of order 10−4 or 0.01% of the mean level
spacing [15]. The semiclassical result obtained here is a factor of 100 times less precise than
the BIM if one usesb > 10. If one decreasesb to below ten, a deviation in accuracy does
result and if one usesb less than three, about 25% of states in the spectrum are missed.

nevertheless greater. Using the quarter stadium we find a precision of about 15% of the mean level spacing whereas
the full stadium gives a precision of roughly 1% of the mean level spacing for eigenstates of odd–odd parity. These
results accidentally coincide with those found by using the BIM [15].
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Figure 1. Results of Bogomolny’s transfer operator method for the hard chaos cases for both even
(a), (c), (e) and odd (b), (d), (f ) eigenstates. We drawα(E) = log10(|N(Esc)− N(Eex)|) versus
N(Eex). The top figures (a) and (b) are forλ = 0.2, the middle figures (c) and (d) are forλ = 0.23
and the bottom (e) and (f ) are forλ = 0.245. All results are with dim(T ) = 350. The lines are
drawn to guide the eye.

We present our results forλ > 0.2 in figure 1. The results are equally good for both the
softer chaos cases,λ < 0.2 and shown in figure 2. From these figures and additional results
performed atλ = 0.125, 0.175, 0.19, it seems clear that there is no reason to believe that the
Bogomolny method is better in one classical regime than in another. In figure 1 and figure 2 we
see no deviation from a characteristic mean for any particular state, indicating that the method
is unaffected by the classification of the wavefunction as being regular, chaotic or mixed. This
is indeed unlike the result expected from the GTF; this semiclassical quantization tool would
be invariably tedious to implement in the mixed regime. In the hard chaos regime,λ = 0.5, and
using a few short periodic orbits, the method has been shown to yield an accuracy of 8–10%
of the mean level spacing [43].

It must be pointed out that the slight increase of the semiclassical error with increasing
sequence number in figures 1 and 2 is not due to the semiclassical method, instead it results
from the decrease ofb. Because in our numerical calculation, the dimension of matrix dim(T )

is fixed at 350 as aforementioned, thusb ∼ 1/
√
N , whereN is the sequence number.



Bogomolny’s semiclassical quantization scheme 5427

Figure 2. The same as figure 1 but for forλ = 0.1 (a) and (b) andλ = 0.15 (c) and (d). Again (a)
and (c) are for even states, (b) and (d) for odd states. All results are for dim(T ) = 350. The lines
are drawn to guide the eye.

To verify the method for soft chaos at high energy, we explore a small energy range starting
with the 10 603rd even state with dim(T ) = 1000, and thusb ≈ 3.2. The corresponding
energy range,E = (81 435, 81 600) includes 24 odd and 24 even states. At these energies
a classification of each eigenstate in terms of a regular, chaotic or mixed description has
been obtained but again our calculations confirm that Bogomolny’s scheme is independent of
the eigenstate’s classification. We illustrate the 24 even wavefunctions in coordinate space
in figure 3 and as a smoothed Wigner function, see in figure 4. Their corresponding exact
eigenenergy, the eigenenergy obtained by Bogomolmny’s scheme and their classification as
being chaotic, regular, or mixed are presented in table 1. Compared with the average error at
lower energy, one finds that the error is also slightly increased. Again, this is due to the decrease
of b. This conclusion is different from that one obtained by Prosen and Robnik [18] for circular
billiard with the torus quantization. There they found that the semiclassical quantization error
increases with increasing energy.

The classification of eigenstates is based on the comparison of smoothed projective Wigner
function and that of the classical as used in our previous work [40,41]. The Wigner function
(of an eigenstateψ(u, v)) defined in the full phase space(u, v, px, py) is

W(q,p) = 1

(2π)2

∫
dX2 exp(−ipX)ψ

(
q − X

2

)
ψ†

(
q +

X

2

)
. (10)

Hereψ is a function of two variablesq = (x, y) andp = (px, py). We have also put ¯h = 1. In
order to compare the quantum Wigner functions with the classical Poincaré map we first choose
a SOS (not the boundary) and define a projection ofW(q,p) onto the SOS. The objective is to
cast the Wigner function into a 2-dim space of one coordinate and its conjugate momentum.
We take the SOS to be the liney = 0 and project the Wigner function of even states onto the
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Figure 3. The gallery of wavefunctions in coordinate space for 24 consecutive eigenstates starting
from the 10 603rd state. The order is left–right and top–down.

x-axis,

ρSOS(x, px, y = 0) =
∫

dpy W(x, y = 0, px, py) (11)

which nicely reduces the number of integrations by one and is equal to

ρSOS(x, px) = 1

2π

∫
da exp(iapx)ψ

(
x +

a

2
, 0
)
ψ†
(
x − a

2
, 0
)
. (12)

As is well known that the Wigner function and its projections are not positive definite and
indeed one typically finds small and inconvenient but nevertheless physical oscillations around
zero which seriously obscure the main structural features. Therefore in order to compare the
classical and quantal phase space structure we have smoothed the projection equation (12) by
using a normalized Gaussian kernel with a suitably adapted dispersion, [44,45].

In figure 3 we show the wavefunctions (in coordinate space) corresponding to 24
eigenstates of even parity beginning with the 10 603rd state. The reference eigenenergy was
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Figure 4. Smoothed objectρSOS of the wavefunctions in figure 3. Again the order is left–right
and top–down. The abscissa is from−1 +λ to 1 +λ, and the vertical axis from−√E to

√
E. So

the minimum quantum cell is about the size 4/
√
E.

obtained by diagonalization of a 32 000× 32 000 matrix. In figure 4 we plot the smoothed
objectρSOS in equation (12). The lowest contour shown is at the level of 0.15 of the maximal
value and the step size upwards is 0.15 of the maximum.

From a comparison of figure 4 and the classical phase space on they = 0 SOS in figure 5
we can classify the wavefunction as being either regular, chaotic or mixed. In table 1 we
note the classification and the precision of Bogomolny’s scheme. Again we hope that this
small energy range, but nevertheless representative, can help to justify our conclusion that
Bogomolny’s scheme is independent of the morphology of the eigenstate.

To examine the effect of increasingb in the deep semiclassical limit, we consider the
states 10 610 (mixed), 10 611 (chaotic) and 10 612 (regular). The matrix dimension dim(T osc)

is increased from 700, 830 to 1000 which corresponds to the boundary node densityb is
approximately changed from 2.45, 2.91 to 3.44, respectively. The results are shown in table 2.
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Table 1. The classification of the 24 consecutive high-lying even states of the Limaçon billiard at
λ = 0.15. By comparing the smoothed functionρSOS (figure 4) with the classical phase portrait
(figure 5), we can distinguish the states as chaotic (C), regular (R) and mixed (M). The semiclassical
eigenenergy obtained by Bogolmony’s scheme is given and compared with the reference quantum
eigenenergies. The error is measured in the unit of the mean level spacing. For all these states we
used a 1000-dimensional array (b ≈ 3.51) except for the 10 614th, 10 622th and 10 623th states.
Here we had to use a larger matrix of dimension 1200, (b ≈ 4.22), since by using smallerb, these
two levels are always missed.

N Classification Eex Esc |1E|
10 603 c 81, 361.69 81, 361.88 2.4e− 2
10 604 c 81, 369.91 81, 370.10 2.4e− 2
10 605 c 81, 372.41 81, 372.51 1.3e− 2
10 606 c 81, 377.38 81, 377.52 1.8e− 2
10 607 c 81, 382.99 81, 382.77 2.8e− 2
10 608 c 81, 398.52 81, 398.39 1.6e− 2
10 609 c 81, 408.35 81, 408.50 1.9e− 2
10 610 m 81, 435.34 81, 435.57 2.9e− 2
10 611 c 81, 441.86 81, 442.05 2.4e− 2
10 612 r 81, 451.87 81, 452.47 7.5e− 2
10 613 r 81, 455.08 81, 455.35 3.4e− 2
10 614 c 81, 458.73 81, 459.03 3.8e− 2
10 615 r 81, 462.10 81, 462.28 2.3e− 2
10 616 m 81, 472.86 81, 472.97 1.4e− 2
10 617 c 81, 501.51 81, 501.76 3.1e− 2
10 618 c 81, 504.34 81, 504.65 3.9e− 2
10 619 r 81, 507.96 81, 508.23 3.9e− 2
10 620 c 81, 511.94 81, 512.05 1.4e− 2
10 621 c 81, 512.74 81, 512.95 2.6e− 2
10 622 c 81, 534.52 81, 535.00 6.0e− 2
10 623 r 81, 536.83 81, 537.03 2.5e− 2
10 624 c 81, 538.91 81, 539.09 2.3e− 2
10 625 r 81, 543.85 81, 544.07 2.8e− 2
10 626 c 81, 558.03 81, 888.24 2.6e− 2

Figure 5. Portraits of the classical phase space on they = 0 for
λ = 0.15.

The enhancement of the accuracy is clearly shown in each of these three eigenstates of different
classes.

As a further example, finally we consider the first hundred eigenstates of the Bunimovich
stadium billiard with odd–odd parity. The dimensions are the following: the semicircle ends
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Table 2. The dependence of the eigenenergies with the boundary nodes densityb for three different
classes of eigenstates, regular, mixed and chaotic. The matrix dimension dim(T osc) is increased
from 700, 830 to 999. The boundary nodes densityb is approximately changed from 2.45, 2.91
to 3.44, respectively. The enhancement of the accuracy is demonstrated in each of these three
eigenstates of different classes.

N Classification Eex Esc(b = 2.45) Esc(b = 2.91) Esc(b = 3.44)

10 610 m 81, 435.34 81, 435.68 81, 435.62 81, 435.58
10 611 c 81, 441.86 81, 442.15 81, 442.10 81, 442.07
10 612 r 81, 451.87 81, 452.52 81, 452.50 81, 452.47

Figure 6. Results of Bogomolny’s transfer operator method for the odd–odd parity eigenstates in
the stadium billiard. The top figure (a) refers to data using the quarter stadium and the lower figure
(b) to the data using the whole stadium and extracting only those energies close to the reference
eigenvalues. The lines are drawn to guide the eye.

have radiusR = 1 and the half length of the straight segmenta is fixed at one. We consider
both the quarter stadium with Dirichlet boundary conditions on all four walls and the entire
boundary which will give all four symmetry classes. The classical dynamics of this system
has been shown to be ergodic [42]. The quantum reference eigenvalues were computed by
using the PWDM and are accurate to 10−4 of the mean level spacing [15]. A comparison of the
semiclassical result and the reference eigenvalues, seen to be comparable with those obtained
for the Limaçon billiard, are shown in figure 6.

4. Conclusion and discussions

We have studied the semiclassical quantization scheme of Bogomolny for two quantum billiard
systems, one of which is classically ergodic for all physical parameters, the stadium billiard, and
the other makes a smooth transition from integrability to hard chaos as a parameterλ is changed.
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We have studied the latter billiard for several values ofλ corresponding to both soft and
hard chaos. We do not observe a dependence of the numerical accuracy of the method on
the classification of the wavefunction as being either regular, chaotic or mixed. Furthermore
with respect to a reference set of eigenvalues, the accuracy of the semiclassical method is on
average about 1% of the mean level spacing. Here we use the eigenvalues obtained by the
matrix diagonalization technique as the reference set.

In the Bunimovich stadium billiard we obtain results for the first 100 states of odd–odd
parity. We find that the method obtains results that are very much comparable with those for
the Limaçon billiard.

As some further applications of this work we may consider the calculation of semiclassical
eigenvalues in systems where ghost trajectories should be included in the calculation of the
transfer matrix. Examples would include any billiard with a non-convex boundary (trajectories
passing outside of the billiard) or billiards such as the Sinai and annulus billiard.

We could also consider an application of Bogomolny’s method in polygonal billiard
systems with one angle a rational multiple ofπ , a so-called pseudo-integrable billiard [46,47]
where the wavefunction shows multifractality [48].
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Artuso R, Aurell E and Cvitanović P 1990Nonlinearity3 361
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